import numpy as np import math def _create_angles_dict(pt, mt, tl): """ pt,mt,tl: tuple(2) that contains: (angle, [idxTop, idxBottom]) """ return { "pt": { "angle": pt[0], "idxs": [pt[1][0], pt[1][1]], }, "mt": { "angle": mt[0], "idxs": [mt[1][0], mt[1][1]], }, "tl": { "angle": tl[0], "idxs": [tl[1][0], tl[1][1]], } } def _isS(p): num = len(p) ll = np.zeros([num-2,1]) for i in range(num-2): ll[i] = (p[i][1]-p[num-1][1])/(p[0][1]-p[num-1][1]) - (p[i][0]-p[num-1][0])/(p[0][0]-p[num-1][0]) flag = np.sum(np.sum(np.dot(ll,ll.T))) != np.sum(np.sum(abs(np.dot(ll,ll.T)))) return(flag) def cobb_angle_cal(landmark_xy, image_shape): """ `landmark_xy`: number[n]. [x1,x2,...,xn,y1,y2,...,yn], where - `n` is even. - 0 <= x <= W - 0 <= y <= H `image_shape`: (HEIGHT, WIDTH, CHANNELS) *only HEIGHT is important Returns: Tuple(4): cobb_angles_list, angles_with_pos, curve_type, midpoint_lines. - `cobb_angles_list` - For evaluating with ground-truth: ex. [0.50, 0.11, 0.33]. - `angles_with_pos` - dict of "pt", "mt", "tl", each with values for "angle" and "idxs". - `curve_type` - "S" or "C". - `midpoint_lines` - list of mid point line coordinates: ex. [[[x,y][x,y]], [[x,y][x,y]], ...]. """ landmark_xy = list(landmark_xy) # input is list ap_num = int(len(landmark_xy)/2) # number of points vnum = int(ap_num / 4) # number of verts first_half = landmark_xy[:ap_num] second_half = landmark_xy[ap_num:] # Values this function returns cob_angles = np.zeros(3) angles_with_pos = {} curve_type = None # Midpoints (2 points per vertebra) mid_p_v = [] for i in range(int(len(landmark_xy)/4)): x = first_half[2*i: 2*i+2] y = second_half[2*i: 2*i+2] row = [(x[0] + x[1]) / 2, (y[0] + y[1]) / 2] mid_p_v.append(row) mid_p = [] for i in range(int(vnum)): x = first_half[4*i: 4*i+4] y = second_half[4*i: 4*i+4] point1 = [(x[0] + x[2]) / 2, (y[0] + y[2]) / 2] point2 = [(x[3] + x[1]) / 2, (y[3] + y[1]) / 2] mid_p.append(point1) mid_p.append(point2) # Line and Slope vec_m = [] for i in range(int(len(mid_p)/2)): points = mid_p[2*i: 2*i+2] row = [points[1][0]-points[0][0], points[1][1]-points[0][1]] vec_m.append(row) mod_v = [] for i in vec_m: row = [i[0]*i[0], i[1]*i[1]] mod_v.append(row) dot_v = np.dot(np.matrix(vec_m), np.matrix(vec_m).T) mod_v = np.sqrt(np.sum(np.matrix(mod_v), axis=1)) dot_v = np.dot(np.matrix(vec_m), np.matrix(vec_m).T) slopes = [] for i in vec_m: slope = i[1]/i[0] slopes.append(slope) angles = np.clip(dot_v/np.dot(mod_v, mod_v.T), -1, 1) angles = np.arccos(angles) maxt = np.amax(angles, axis = 0) pos1 = np.argmax(angles, axis = 0) pt, pos2 = np.amax(maxt), np.argmax(maxt) pt = pt*180/math.pi cob_angles[0] = pt if(_isS(mid_p_v)==False): mod_v1 = np.sqrt(np.sum(np.multiply(np.matrix(vec_m[0]), np.matrix(vec_m[0])))) mod_vs1 = np.sqrt(np.sum(np.multiply(np.matrix(vec_m[pos2]), np.matrix(vec_m[pos2])), axis=1)) mod_v2 = np.sqrt(np.sum(np.multiply(np.matrix(vec_m[int(vnum-1)]), np.matrix(vec_m[int(vnum-1)])), axis=1)) mod_vs2 = np.sqrt(np.sum(np.multiply(vec_m[pos1.item((0, pos2))], vec_m[pos1.item((0, pos2))]))) dot_v1 = np.dot(np.array(vec_m[0]), np.array(vec_m[pos2]).T) dot_v2 = np.dot(np.array(vec_m[int(vnum-1)]), np.array(vec_m[pos1.item((0, pos2))]).T) mt = np.arccos(np.clip(dot_v1/np.dot(mod_v1, mod_vs1.T), -1, 1)) tl = np.arccos(np.clip(dot_v2/np.dot(mod_v2, mod_vs2.T), -1, 1)) mt = mt*180/math.pi tl = tl*180/math.pi cob_angles[1] = mt cob_angles[2] = tl # DETECTION CASE 1: Spine Type C angles_with_pos = _create_angles_dict(mt=(float(pt), [pos2, pos1.A1.tolist()[pos2]]), pt=(float(mt), [0, int(pos2)]), tl=(float(tl), [pos1.A1.tolist()[pos2], vnum-1])) curve_type = "C" else: if(((mid_p_v[pos2*2][1])+mid_p_v[pos1.item((0, pos2))*2][1]) < image_shape[0]): #Calculate Upside Cobb Angle mod_v_p = np.sqrt(np.sum(np.multiply(vec_m[pos2], vec_m[pos2]))) mod_v1 = np.sqrt(np.sum(np.multiply(vec_m[0:pos2], vec_m[0:pos2]), axis=1)) dot_v1 = np.dot(np.array(vec_m[pos2]), np.array(vec_m[0:pos2]).T) angles1 = np.arccos(np.clip(dot_v1/np.dot(mod_v_p, mod_v1.T), -1, 1)) CobbAn1, pos1_1 = np.amax(angles1, axis = 0), np.argmax(angles1, axis = 0) mt = CobbAn1*180/math.pi cob_angles[1] = mt #Calculate Downside Cobb Angle mod_v_p2 = np.sqrt(np.sum(np.multiply(vec_m[pos1.item((0, pos2))], vec_m[pos1.item((0, pos2))]))) mod_v2 = np.sqrt(np.sum(np.multiply(vec_m[pos1.item((0, pos2)):int(vnum)], vec_m[pos1.item((0, pos2)):int(vnum)]), axis=1)) dot_v2 = np.dot(np.array(vec_m[pos1.item((0, pos2))]), np.array(vec_m[pos1.item((0, pos2)):int(vnum)]).T) angles2 = np.arccos(np.clip(dot_v2/np.dot(mod_v_p2, mod_v2.T), -1, 1)) CobbAn2, pos1_2 = np.amax(angles2, axis = 0), np.argmax(angles2, axis = 0) tl = CobbAn2*180/math.pi cob_angles[2] = tl pos1_2 = pos1_2 + pos1.item((0, pos2)) - 1 # DETECTION CASE 2: Spine Type S, Up and Bottom # print("case 2") angles_with_pos = _create_angles_dict(mt=(float(pt), [pos2, pos1.A1.tolist()[pos2]]), pt=(float(mt), [int(pos1_1), int(pos2)]), tl=(float(tl), [pos1.A1.tolist()[pos2], int(pos1_2)])) curve_type = "S" else: #Calculate Upside Cobb Angle mod_v_p = np.sqrt(np.sum(np.multiply(vec_m[pos2], vec_m[pos2]))) mod_v1 = np.sqrt(np.sum(np.multiply(vec_m[0:pos2], vec_m[0:pos2]), axis=1)) dot_v1 = np.dot(np.array(vec_m[pos2]), np.array(vec_m[0:pos2]).T) angles1 = np.arccos(np.clip(dot_v1/np.dot(mod_v_p, mod_v1.T), -1, 1)) CobbAn1 = np.amax(angles1, axis = 0) pos1_1 = np.argmax(angles1, axis = 0) mt = CobbAn1*180/math.pi cob_angles[1] = mt #Calculate Upper Upside Cobb Angle mod_v_p2 = np.sqrt(np.sum(np.multiply(vec_m[pos1_1], vec_m[pos1_1]))) mod_v2 = np.sqrt(np.sum(np.multiply(vec_m[0:pos1_1+1], vec_m[0:pos1_1+1]), axis=1)) dot_v2 = np.dot(np.array(vec_m[pos1_1]), np.array(vec_m[0:pos1_1+1]).T) angles2 = np.arccos(np.clip(dot_v2/np.dot(mod_v_p2, mod_v2.T), -1, 1)) CobbAn2, pos1_2 = np.amax(angles2, axis = 0), np.argmax(angles2, axis = 0) tl = CobbAn2*180/math.pi cob_angles[2] = tl # pos1_2 = pos1_2 + pos1.item((0, pos2)) - 1 # DETECTION CASE 3: Spine Type S, Up and Bottom # print("case 3") angles_with_pos = _create_angles_dict(tl=(float(pt), [pos2, pos1.A1.tolist()[pos2]]), mt=(float(mt), [pos1_1, pos2]), pt=(float(tl), [int(pos1_2), int(pos1_1)])) curve_type = "S" midpoint_lines = [] for i in range(0,int(len(mid_p)/2)): midpoint_lines.append([list(map(int, mid_p[i*2])), list(map(int, mid_p[i*2+1]))]) # Remove Numpy Values cobb_angles_list = [float(c) for c in cob_angles] for key in angles_with_pos.keys(): angles_with_pos[key]['angle'] = float(angles_with_pos[key]['angle']) for i in range(len(angles_with_pos[key]['idxs'])): angles_with_pos[key]['idxs'][i] = int(angles_with_pos[key]['idxs'][i]) return cobb_angles_list, angles_with_pos, curve_type, midpoint_lines def keypoints_to_landmark_xy(keypoints): """ converts keypoints (from model) [ [ [x,y],[x,y],[x,y],[x,y] ] ] to [x1,x2,x3,...,xn,y1,y2,y3,...,yn] """ x_points = [] for kps in keypoints: for kp in kps: x_points.append(kp[0]) y_points = [] for kps in keypoints: for kp in kps: y_points.append(kp[1]) landmark_xy = x_points + y_points return landmark_xy