Files

158 lines
4.5 KiB
Python

import torch
import torchvision
from torchvision.transforms import functional as F
import numpy as np
from scoliovis.get_model import get_kprcnn_model
# DOWNLOAD THE MODEL (but don't cache)
get_kprcnn_model()
def _filter_output(output):
# 1. Get Scores
scores = output['scores'].detach().cpu().numpy()
# 2. Get Indices of Scores over Threshold
high_scores_idxs = np.where(scores > 0.5)[0].tolist() # Indexes of boxes with scores > 0.5
# 3. Get Indices after Non-max Suppression
post_nms_idxs = torchvision.ops.nms(output['boxes'][high_scores_idxs], output['scores'][high_scores_idxs], 0.3).cpu().numpy() # Indexes of boxes left after applying NMS (iou_threshold=0.3)
# 4. Get final `bboxes` and `keypoints` and `scores` based on indices
np_keypoints = output['keypoints'][high_scores_idxs][post_nms_idxs].detach().cpu().numpy()
np_bboxes = output['boxes'][high_scores_idxs][post_nms_idxs].detach().cpu().numpy()
np_scores = output['scores'][high_scores_idxs][post_nms_idxs].detach().cpu().numpy()
# 5. Get the Top 17 Scores
sorted_scores_idxs = np.argsort(-1*np_scores) # descending
np_scores = scores[sorted_scores_idxs][:18]
np_keypoints = np.array([np_keypoints[idx] for idx in sorted_scores_idxs])[:18]
np_bboxes = np.array([np_bboxes[idx] for idx in sorted_scores_idxs])[:18]
# 6. Sort by ymin
# kp[0] is the first point in [p1,p2,p3,p4]
# kp[0][1] is the y1 in p1=[x1,y1,x2,y2]
ymins = np.array([kps[0][1] for kps in np_keypoints])
sorted_ymin_idxs = np.argsort(ymins) # ascending
np_scores = np.array([np_scores[idx] for idx in sorted_ymin_idxs])
np_keypoints = np.array([np_keypoints[idx] for idx in sorted_ymin_idxs])
np_bboxes = np.array([np_bboxes[idx] for idx in sorted_ymin_idxs])
# 7. Convert everything to List Instead of Numpy
keypoints_list = []
for kps in np_keypoints:
keypoints_list.append([list(map(float, kp[:2])) for kp in kps])
bboxes_list = []
for bbox in np_bboxes:
bboxes_list.append(list(map(int, bbox.tolist())))
scores_list = np_scores.tolist()
return bboxes_list, keypoints_list, scores_list
def predict(images):
"""
images:
> List of Tensors, shape=[C, W, H]. Values 0-1. |
> Numpy array of image |
> String path to image |
> List of String paths to images
returns (bboxes, keypoints, scores)[] of n=17
"""
device = torch.device('cpu')
model = get_kprcnn_model()
model.to(device)
model.eval()
# 1. Process `images`
images_input = [F.to_tensor(images)]
images_input = [image.to(device) for image in images_input]
# 2. Inference
with torch.no_grad():
outputs = model(images_input) # 3. get output
filtered_outputs = [_filter_output(output) for output in outputs]
return filtered_outputs
from scoliovis.cobb_angle_cal import cobb_angle_cal, keypoints_to_landmark_xy
def kprcnn_to_scoliovis_api_format(bboxes, keypoints, scores, image_shape):
"""
@params
- `bboxes, keypoints, scores` - outputs from the model
- `image_shape` - (HEIGHT, WIDTH, CHANNELS)
@returns {
`detections`: {
`class`: number,
`confidence`: number,
`name`: "vert",
`xmax`: number,
`xmin`: number,
`ymin`: number,
`ymax`: number
},
`normalized_detections`: **REMOVED**,
`landmarks`: [x,y,x,y,x,y,x,y,x,y,x,y],
`angles`: {
`pt`: {
`angle`: number,
`idxs`: [number, number]
},
`mt`: {
`angle`: number,
`idxs`: [number, number]
},
`tl`: {
`angle`: number,
`idxs`: [number, number]
}
},
`midpoint_lines`: [
[[x,y],[x,y]],
[[x,y],[x,y]],
[[x,y],[x,y]]
],
`curve_type`: "S" | "C"
}
"""
detections = []
for idx, bbox in enumerate(bboxes):
detections.append({
"class": 0,
"confidence": scores[idx],
"name": "vert",
"xmin": bbox[0],
"ymin": bbox[1],
"xmax": bbox[2],
"ymax": bbox[3],
})
landmarks = []
for kps in keypoints:
for kp in kps:
landmarks.append(kp[0])
landmarks.append(kp[1])
try:
_, angles, curve_type, midpoint_lines = cobb_angle_cal(keypoints_to_landmark_xy(keypoints), image_shape)
except:
curve_type = None
angles = None
midpoint_lines = None
print("Could not calculate Cobb Angle for this Image")
return {
"detections": detections,
"landmarks": landmarks,
"angles": angles,
"curve_type": curve_type,
"midpoint_lines": midpoint_lines,
}